

Stochastic population modeling

Ola Diserud 14 and 17.03.2016

Figure 4.1: Deterministic growth of the total population size (upper panel) and change in age-distribution through time (lower panel) in a deterministic matrix model of the Lefkovitch with 10 stages, corresponding to ages 1-9 and the last stage contains individuals of age 10 and older. Parameter values are $p_i = 0.55$ for all classes, $f_1 = 0$ and $f_i = 1$ for i > 1. Initially $n_1 = 20$ and $n_i = 0$ for i > 1 at time zero. The dashed line shows the exact exponential growth in the case that the 20 individuals originally were distributed according to the stable age-distribution for the model. The dotted line shows the growth of the reproductive value.

.

Fig 4.1, p. 121

Generation time

Expected age for mothers that give birth when population has a stable age distribution.

$$T = \sum_{i=1}^{k} i \times l_i \times f_i \times \lambda^{-i}$$

4.2.3 Matrix formulation

- Multiplicative growth rate of the population is the dominant eigenvalue λ of the projection matrix \underline{l}
- **Stable age distribution** \underline{u} , $(\sum u_i = 1)$
 - = right dominant eigenvector defined by $\underline{lu} = \lambda \underline{u}$
- **Reproductive values** \underline{v} , $(\sum u_i v_i = 1)$ defined by $\underline{vl} = \lambda \underline{v}$
- Total reproductive value after one generation $V + \Delta V = \underline{v}(\underline{n} + \Delta \underline{n}) = \underline{v} \underline{1} \underline{n} = \lambda \underline{v} \underline{n} = \lambda V$

4.2.3 Matrix formulation

Important result from linear algebra: $\frac{\partial \lambda}{\partial l_{i,j}} = v_i u_j$

where $l_{i,i}$ is a non-zero element in <u>l</u>

This is called the sensitivity of λ with respect to the (i,j)th element

4.3.3 Reproductive value dynamics

\underline{n} : population vector

$$\underline{v} : \text{ reproductive value defined by} \\ \underline{l} = E\underline{M} = EE(\underline{M} \mid \underline{Z}); \quad \underline{vl} = \lambda \underline{v} \\ \underline{vl} = E\underline{M} = EE(\underline{M} \mid \underline{Z}); \quad \underline{vl} = \lambda \underline{v} \\ \underline{vl} = L\underline{v} \\ \underline{vl} \\ \underline{vl} = L\underline{v} \\ \underline{vl} \\ \underline{vl} \\ \underline{vl} \\ \underline{vl} = L\underline{v} \\ \underline{vl} \\ \underline{$$

$$\underline{u}$$
: age structure, $\sum u_i = 1; \underline{lu} = \lambda \underline{u}$

Scaling:
$$\sum u_i v_i = 1$$

$$V = \sum n_i v_i$$
 : total reproductive value

